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Comment – Reviewer 2 Answer - Authors
Introduction

1. Page 2, first paragraph: move lines 39-40 to 
line 37 before mentioning the farmed 
shrimp species. Also should state that 
shrimp are also farmed in inland areas (L. 
vannamei) and L vannamei is the most 
farmed species.

The referred phrase was moved from the first paragraph to 
the second paragraph (lines 66-68 of the new draft). This 
phrase comes before mentioning farmed species. In lines 
72-73 (new draft) it is mentioned that the L vannamei is the 
most farmed shrimp species and farmed in inland and 
coastal areas.

2. Lines 55-58, I think no more wild seed are 
used for L. vannamei (100% domesticated) 
and P. monodon. To avoid being too 
dramatic with “high environment impact” 
and any issues with consumers I would 
remove this as the shrimp industry has been 
improving on these matters and there is still 
room for that (reason of this work; prefer to 
keep from lines 63). Remove also disease 
sentence (line 59). I would suggest 
maintaining lines 60-62 and highlighting the 
waste problems, current practices to 
address the issue and then the willing to 
improve which has already been addressed 
from lines 63. So, better start new 
paragraph from line 60.

The phrase “The expansion of shrimp mariculture in Brazil 
near coastal areas has also led to environmental
Problems…” begins the final paragraph of the new draft 
(lines 83-86). We have attempted to address the request of 
the reviewer in this paragraph.

3. Line 68, not “current research” as you are 
citing other guys.   

We agree and have made the revision. This is line 96 in the 
new draft.

4. Line 73, Can you clarify other management 
strategies apart from different densities?

We have attempted to clarify in the final line of this 
paragraph by providing a brief description as to how the 
management strategies differed (probiotics, fertilizers, 
monophasic vs. biphasic stocking). This is seen in lines 102-
103 of the new draft.

Methods
5. Page 4, Line 79, any salinity value? Salinity is now provided in line 110 of the new draft.
6. Lines 86-87, the second sentence should 

come after line 115.
We agree and have made this revision (lines 150-151 of the 
new draft)

7. Line 115, authors use the term “prawn”. It is 
better to be consistent as from beginning 
the author use “shrimp”.

This was a typing error. Nonetheless, this was revised 
(phrase in line 149 of the new draft).

Results
8. Table 2: “Final individual biomass? Or 

weight?
We changed to “Mean individual mass”, as has been used 
in Dantas et al. 2020 (published in Aquaculture) and in 
other recent publications, referring to the individual 
animal. This change is observed in Table 2.

9. If survival between M1 and M3 was similar, 
why there is difference in final biomass?

Different stocking densities, but also the term “final 
biomass” was changed to “final yield” for clarification. This 
was written in lines 299-301 of the new draft.



10. I believe it is better to use feed conversion 
rate (FCR) than apparent feed conversion 
(AFC) as we would like to know how the 
“really” amount of feed contributed to 
different sedimentation rates.

We agree and have made this revision in lines 223-224 of 
the new draft, and in the first paragraph of the discussion.

Discussion
11. Page 8, lines 235-236, due to WSSV? If that 

is the case you should have detected and 
reported in your methodology. If the disease 
affected then your overall results are as 
well. How would you justify the impact of 
density and other management you tested?

 Detection of WSSV now included in methodology of new 
draft (lines 205-209). WSSV is also discussed in the first 
paragraph of the discussion. In lines 386-413, we explained 
how certain intrinsic/biotic factors are able to stabilize 
pond conditions despite variations in inputs. Hence, overall 
results were not likely due to WSSV.

12. Why survival on M2 is significantly lower 
than other M1 and M3?

This was addressed in the first paragraph of the discussion.

13. Lines 243-244, following “mean salinity” I 
expected to see mean value in the brackets. 
L vannamei can withstand salinity to 60 g/L.

This was revised according to recommendation of the 
reviewer and is observed in line 309 of the new draft.

14. Lines 238-239, if higher AFC in M1 is related 
to low survival, how do you explain lower 
AFC in M2 which had significantly lower 
survival than M1? And lower AFC in M3 if it 
had similar survival to M1?

This is due to differences in stocking density and growth, 
and is noted in lines 299-304.

15. Line 322-326, If the difference was not 
observed due to high feed input then how 
do you relate this to different AFC you 
reported? Different AFC would mean that 
each treatment had different feed input and 
it would theoretical have differential impact 
on sedimentation rate

We have attempted to address the flow/accumulation of 
carbon/sedimentation in aquatic systems in lines 386-413. 
Basically, certain intrinsic factors regulate the 
transformation and flow of nutrients, independent of the 
nutrient input loads. 



Highlights:

 This was the first study to analyze the sedimentation rates of nutrients and particulate 

material during the cultivation of the marine shrimp Litopenaeus vannamei.

 This study used three treatments that differed according to management strategies and 

stocking densities, of which were based on the use of fertilizers and whether the shrimps 

were stocked directly or indirectly.

 The water used in the present study was recycled in recirculating systems, being provided to 

the ponds only to compensate for losses to evaporation.
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Abstract 26 

Marine shrimp farming is an important economic activity in tropical and subtropical 27 

regions, but its expansion has contributed to the increase of nutrients and organic matter in 28 

coastal ecosystems. Thus, this work evaluated the sedimentation rates of nutrients and 29 

particulate matter in marine shrimp (Litopenaeus vannamei) grow-out in earthen ponds. Three 30 

different stocking densities of the shrimp were evaluated over a period of approximately 79 31 

days: M1: 92 shrimps.m-2; M2: 14 shrimps.m-2 and M3: 8 shrimps.m-2. Transparency, 32 

temperature, pH and dissolved oxygen remained within the ideal ranges for L. vannamei pond 33 

mariculture, whereas the salinity was outside the recommended range. With the exception of 34 

total inorganic and organic carbon, the sedimentation rates of nutrients were significantly higher 35 

in M3 for the first sample period. This was perhaps due to the management of the first phase 36 

(greenhouse) requiring high inputs for a high initial population and the consequent 37 

accumulation of suspended solids and organic matter. The M1 showed decreases throughout 38 

the experimental period for the sedimentation rates of nutrients, which may have been subjected 39 

to bacterial decomposition. Decreasing sedimentation rates in the M2 were only observed for 40 

ammonia, nitrate and total-N. This trend may be associated with the primary production in the 41 

earthen pond system as suggested by the increasing of chlorophyll-α throughout the cultivation. 42 

In conclusion, the sedimentation rates of nutrients in marine shrimp aquaculture are influenced 43 

by a high stocking density and the quantity of feed offered per unit of production area.  44 

 45 

Keywords: Greenhouse, Earthen ponds, Nutrients, Sedimentation rate, Shrimp. 46 
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1. Introduction 52 

Aquaculture and other agricultural activities provide food security and poverty alleviation 53 

but are generally associated with negative environmental impacts (Bartley et al., 2007; Béné et 54 

al., 2016). Commercial aquaculture is one of the fastest growing agriculture industries 55 

worldwide that has led to a robust and diverse human food supply, consisted of quality products 56 

with high added value. The expansion of aquatic farming must coincide with the optimization 57 

of production while minimizing water exchange, greenhouse gas emissions, and improve the 58 

treatment and recycling of effluents to improve the economic, social and environmental 59 

sustainability of aquaculture (Pereira and Rocha, 2015; Moura, et al., 2016; Araújo and Valenti, 60 

2017; Soares and Henry-Silva, 2019). More specifically, the aquaculture industry needs new 61 

management strategies to overcome negative externalities (Bostock et al., 2010; Troell et al., 62 

2014; Hatje et al., 2016; Ribeiro et al., 2016).  63 

 Among aquatic production systems, shrimp mariculture has become one of the most 64 

productive aquaculture activities worldwide, representing the second highest group of exported 65 

species in terms of value (FAO, 2018). Marine shrimp are cultivated in coastal and estuarine 66 

regions and are an important source of income for several Asian and Latin American countries, 67 

including Brazil (Wurmann et al., 2004; Liao and Chien, 2011; Castillo-Juárez et al., 2015). 68 

The two major marine shrimp species used for commercial production are the American species 69 

of Litopenaeus vannamei and the Asian species Penaeus monodon. The L. vannamei represents 70 

53% of global crustacean aquaculture, and global output increased from ~2.7 million tonnes in 71 

2010 to ~4.2 million tonnes in 2016 (FAO, 2018). The L. vannamei is a popular aquaculture 72 

species due to its capacity to be produced in coastal regions and inland in freshwater or saline-73 

alkaline environments.  74 

 Post-larval shrimps are epibenthic and hence, remain above the bottom sediments in 75 

earthen grow-out ponds where most of the organic matter and nutrients accumulate. The 76 
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sedimented material is attributed to the use of fertilizers, high feed inputs, and the growth and 77 

turnover of the plankton community that eventually settles on the bottom sediments in earthen 78 

ponds as organic matter. The high accumulation of organic matter in bottom sediments leads to 79 

the depletion of dissolved oxygen due to increased microbial decomposition and aquatic 80 

respiration, which compromise the production. In general, a high portion of the nutrients from 81 

shrimp production is drained with the effluents to natural estuarine and mangrove environments 82 

(Pereira et al., 2013; Ottinger et al., 2016; Hatje et al., 2016; Ribeiro et al., 2016). 83 

The expansion of shrimp mariculture near coastal areas has led to environmental 84 

problems such as the increased use of natural fisheries resources as a source for high quality 85 

protein and the consequent rise in organic material and nutrient loads into littoral aquatic 86 

environments (Boyd and Tucker, 2014). Commercial feed in shrimp mariculture accounts for 87 

the majority of nutrient inputs in ponds, and has higher potential impacts on soil quality when 88 

compared to other aquaculture activities since the feed settles directly on pond bottoms (Páez-89 

Osuna and Ruiz-Fernández, 2005; Boyd and Tucker, 2014). In 2015, global shrimp mariculture 90 

was responsible for the highest consumption of fishmeal when compared to all other major 91 

aquaculture activities (Tacon et al., 2011; Hasan, 2017). Therefore, the development of modern 92 

shrimp farming must focus on the use of highly digestible feeds with adequate levels of protein 93 

and alternate protein sources as a strategy to improve environmental conditions, which may 94 

lead to less water exchange, decreased costs for pumping, and a reduction in the proliferation 95 

of pathogens (Azevedo-Santos et al., 2011, Castillo-Soriano et al., 2013; Silva et al., 2013; Brito 96 

et al., 2014; David et al., 2015; Henry-Silva et al., 2015). Only a few recent studies have focused 97 

on alternative feed sources and the conversion of commercial feed into shrimp biomass as a 98 

strategy to reduce organic matter and nutrient loads that contribute to the eutrophication of 99 

aquatic environments (Chen et al., 2012; Brito et al., 2016; Oestreich et al., 2016). Thus, the 100 

present study evaluated the sedimentation rates of nutrients and particulate material from the 101 
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aquaculture of marine shrimp (L. vannamei) in an estuarine region of the Brazilian semi-arid 102 

northeast, carried out with different stocking densities and management strategies (use of 103 

fertilizers and probiotics and with single-phase and biphasic stocking).  104 

 105 

2. Materials and Methods  106 

2.1. Area of study 107 

The present study was carried out at a commercial marine shrimp farm located in the 108 

rural coastal region near the city of Mossoró, Rio Grande do Norte - Brazil (05°05′56″S, 109 

37°17′12″W). The water used for cultivation was taken from hypersaline wells with salinities 110 

that varied from 41 to 61 g.L-1. The enterprise has 80 ponds with areas varying from 2,600 to 111 

26,000 m2, used for the grow-out of L. vannamei in densities of 8 to 100 shrimp.m-2. The region 112 

has a tropical and semi-arid climate of BSwh’ according to the Köppen classification system, 113 

with annual averages of temperature of 27.4ºC, rainfall of 685.3 mm and relative humidity of 114 

68.9%. 115 

2.2. Experimental design 116 

 The experimental period was 79 days. The ponds were drained, sterilized and 117 

maintained sanitary and empty for thirty days before being stocked with the L. vannamei post-118 

larvae. Ponds with areas of 26,000 m2 were used for treatments with low stocking densities (8-119 

14 shrimp.m-2) and ponds with areas of 2,600 m² for treatments with high stocking densities 120 

(92 shrimps.m-2). The shrimps were stocked with a mean individual weight of 0.004 g (post-121 

larva stage 12). The experimental design was completely randomized with three treatments and 122 

four replicates, for a total of 12 experimental units as earthen ponds.  123 

 The type of management strategy was the factor tested with three levels: Management 124 

strategy 1 (M1): four grow-out ponds were initially stocked with a density of 92 shrimps.m-2. 125 

The production system was managed as a single grow-out phase in which the post-larvae were 126 
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stocked directly in earthen ponds immediately after the larviculture. The ponds were initially 127 

fertilized with a mixture of 100 kg.ha-1 of wheat bran, 30 kg.ha-1 of calcium nitrate, 20 kg.ha-1 128 

of silicate and 20 kg.ha-1 of molasses, and were maintained with biweekly applications of 30 129 

kg.ha-1 of calcium nitrate and weekly of 10 kg.ha-1 of molasses. Management strategy 2 (M2): 130 

four grow-out ponds with an area of approximately 26,000 m2 each were initially stocked with 131 

14 shrimps.m-2. The production system was managed as a single-phase grow-out with an initial 132 

application of fertilizers similar to the M1 treatment, but with no subsequent use of fertilizers. 133 

Management strategy 3 (M3): This treatment consisted of two distinct growth phases. The first 134 

phase was an intermediate growth phase of 30 days in a 20 x 100 meter raceway stocked with 135 

1,000 shrimps.m-2. The raceway was initially fertilized using a mixture of 250 kg.ha-1 of wheat 136 

bran, 45 kg.ha-1 of calcium nitrate and 40 kg.ha-1 of molasses to maintain a C/N ratio above 10 137 

(Avnimelech, 1999). A probiotic mixture comprised of Bacillus sp. and Lactobacillus sp. were 138 

added at 0.2 kg.ha-1 to the production system as well. In the second phase, juveniles of L. 139 

vannamei were transferred from the raceway at a mean individual biomass of 0.98 ± 0.05 g to 140 

four grow-out ponds at a stocking density of 8 shrimps.m-2. Each of the grow-out ponds was 141 

initially fertilized with 30 kg.ha-1 of calcium nitrate and 100 kg.ha-1 of dolomitic limestone. The 142 

ponds were fertilized weekly using 10 kg.ha-1 of calcium nitrate until the harvest. Feed from all 143 

procedures was manually distributed and three feeders were used to verify and control feed 144 

intake.  145 

 Three types of commercial shrimp feed with different compositions were used during 146 

the experiment (Table 1). Phase 1: feed used from stocking until 10 days of culture. Phase 2: 147 

feed used after phase 1 until the shrimp attained a mass of 3g. Phase 3 (grow-out feed): used 148 

from the moment that the shrimps attained 3g until the harvest. During the experiment, the 149 

shrimps were fed three times daily, with two offerings in the morning and one in the afternoon. 150 
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Shrimps, sediment and water samples were collected every 15 days to monitor shrimp growth 151 

for the feed management and to assess the physical and chemical parameters of the cultivation.  152 

 153 

Table 1. Characterization of the commercial feed used in the cultivation. 154 

(at the end of the manuscript) 155 

 156 

 2.3. Particulate matter collection: 157 

Four sample collections were carried out in the M1 and M2 treatments, and three sample 158 

collections for the M3 because of the shorter cultivation time in grow-out ponds. Samples were 159 

collected at 30 days of cultivation and every 15 days thereafter throughout the experimental 160 

period, from September to November of 2016. The particulate matter that settled at the pond 161 

bottoms was sampled by placing tripton collectors in the ponds at a depth of approximately 1.5 162 

meters for 24 hours. The tripton collectors were filled with distilled water before being 163 

submersed to avoid the deposition of solid material before the start of the sampling period. 164 

Samples of sedimentation were taken from the interior of the tripton collectors. To determine 165 

sedimentation rates, 150 mL water samples were obtained from the sedimentation chambers 166 

immediately after removing from the ponds and were filtered using filters (quantitative filter – 167 

nominal retention: 20-25 microns) that were previously dried and weighed (P1). The filters with 168 

particulate material were then dried in an incubator at 60ºC for 24 hours, cooled and weighed 169 

(P2). The differences in the masses between P1 and P2 provided the mass (in grams) of the total 170 

suspended materials. The concentration of the total suspended solids (TSS) was expressed in 171 

mg.L-1 and was determined by the formula: 172 

  𝑇𝑆𝑆 =
𝑃2−𝑃1

𝑉
𝑥1000  173 

Where: 174 

P1 = initial weight of the filter with the sample (g); 175 
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P2 = weight of the filter with sample material after drying in incubator (g); 176 

V = volume of water used for filtration (L);  177 

1,000 = conversion to milligrams. 178 

The sedimentation rate (SR = mg/cm2/day) corresponds to the concentration of the 179 

material in the filtered sample, corrected for the average volume of the tripton collectors and is 180 

estimated by the equation: 181 

   𝑆𝑅 =
Vc x C

Ac x T
  182 

Where: 183 

Vc = volume of the sedimentation chambers (2.36 liters); 184 

C = concentration of the material in suspension inside the chambers (mg.L-1); 185 

Ac = surface area of the sedimentation chamber opening (78.54 cm²); 186 

T = time in days. 187 

The settleable solids were determined using Imhoff cones. Contents of the tripton 188 

collectors were homogenized before obtaining samples to fill the Imhoff cones. The volume of 189 

the homogenized sample was recorded in the cones and the volume of the settled material 190 

(mL.L-1) was measured after a period of 45 min. 191 

2.4. Limnological variables 192 

Water samples were taken from the surface of the ponds to determine the concentrations 193 

of ammonia, nitrate and nitrite (Mackereth et al., 1978), total nitrogen (Koroleff, 1976) and 194 

total phosphorus (Golterman et al., 1978). Total carbon (TC), total organic carbon (TOC) and 195 

total inorganic carbon (TIC) (Bloesch et al., 1977; Cobelas, 1991) were analyzed from samples 196 

collected from the water surface with test tubes (50 ml). Water samples were subjected to 197 

oxidation catalytic combustion using a VARIO-TOC analyzer to determine the different carbon 198 

concentrations. Chlorophyll-α was analyzed from 100 ml samples of the pond surface water. 199 

The samples were filtered using cellulose membrane filter – 47 mm diameter – 0.45 microns 200 
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porosity. Transparency (cm), temperature (ºC), pH, salinity (g.L-1) and dissolved oxygen (mg.L-201 

1) were measured during the collection of the tripton samplers, using a Secchi disk and a water 202 

quality parameter multi-probe sensor (HORIBA U-50). All sample collections were carried out 203 

near the drain gates of the ponds for the day and night periods at 7 AM and 6 PM, respectively.  204 

2.5. White Spot Virus Syndrome Analysis 205 

At the end of the experiment, pleopods of 50 shrimp from each treatment were removed 206 

and stored in 95% ethanol for qPCR to detect the presence of the white spot syndrome virus 207 

(WSSV). WSSV was detected and quantified using qPCR primers and TaqMan probes (Life 208 

technologies®), and an ABI 7300 Real-time PCR system (Applied Biosystem®) using methods 209 

described in Feijó, et al. (2013). 210 

2.6. Data analysis 211 

The following data for the limnological variables were tested for normality (D’Agostino 212 

test) and homoscedasticity (Bartlett test): ammonia, nitrite, nitrate, chlorophyll, 213 

orthophosphate, total carbon (TC), total inorganic carbon (TIC), total organic carbon (TOC), 214 

total phosphorus, total nitrogen, and particulate material. When normality and homoscedasticity 215 

were met, means of the variables were compared using a one-way analysis of variance 216 

(ANOVA) and significant differences were determined using the Tukey test (p<0.05). All 217 

statistical analyses were performed using the software STATISTICA version 10.0. 218 

 219 

3. Results 220 

 The cultivations of treatments M1, M2 and M3 lasted 63, 79 and 51 days, respectively.  221 

Mean survival for treatments M1, M2 and M3 were 42.9%, 12.2% and 39.3%, respectively 222 

(Table 2). Survival was similar between the M1 and M3 treatments, both of which were 223 

significantly higher than the survival in the M2. Significant differences in the feed conversion 224 

ratio (FCR) were shown between treatments, with the value in M1 (2.95/1) being significantly 225 
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higher than the values observed in treatments M2 (1.44/1) and M3 (0.22/1) (Table 2). At the 226 

end of the cultivations, the average values of final yield were 651.9 kg.ha-1 in M1, 332.2 kg.ha-227 

1 in M2 and 219.0 kg.ha-1 in M3. The final shrimp yield in M1 was significantly higher when 228 

compared to the M2 and M3 treatments, of which the latter two treatments showed no difference 229 

between each other (Table 2). The qPCR of the shrimp tissues showed that WSSV was present 230 

in 100% of the samples from all treatments. 231 

 232 

(Suggested location of Table 2) 233 

 234 

Transparency, salinity and dissolved oxygen showed rising trends throughout the 235 

production cycle in the M3 treatment. Salinity of the M3 treatment was significantly higher 236 

than in the M1 and M2 treatments for the second and third sampling periods (Table 3). 237 

Temperature of the M3 presented a downward trend throughout the production cycle. The water 238 

transparency varied from 26 to 40 cm; 40 to 69 g.L-1 for salinity; 26 to 32.0 ºC for water 239 

temperature; 7.4 to 8.6 for pH and 4.1 to 9.7 mg.L-1 for dissolved oxygen throughout the 240 

cultivation period for all treatments. No significant differences were shown for the variables 241 

between the M1 and M2 treatments. 242 

 243 

(Suggested location of Table 3) 244 

 245 

No significant differences were shown between treatments for the different sampling 246 

periods of chlorophyll-α (Table 3). The chlorophyll-α showed a downward trend in the M1 247 

treatment, with higher values recorded in the second sampling period (177.56 ± 160.0 µg.L-1). 248 

A growing trend was shown for the chlorophyll-α in the M2 treatment from the second period 249 

thereafter, with higher values recorded in the fourth sampling period (106.86 ± 30.9 µg.L-1). 250 
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No chlorophyll-α was identified in the first sampling period for the M3 treatment and showed 251 

a growing trend in the subsequent samples (Table 4). 252 

  253 

(Suggested location of Table 4) 254 

 255 

The sedimentation rate of the particulate matter was significantly higher in the M3 than 256 

in the M1 and M2 treatments at 15 days of cultivation, whereas the M1 treatment was 257 

significantly higher than the M2 and M3 for the remaining sampling periods (Fig. 1). The 258 

sedimentation rate of the particulate matter for the M1 was 26.03 mg/cm2/day at 30 days and 259 

decreased to 11.59 mg/cm2/day for the rest of the culture. The sedimentation rate for the M2 260 

increased through the experimental period from 5.5 to 7.3 mg/cm2/day. 261 

The sedimentation rates of ammonia and nitrite were significantly higher in the M3 262 

treatment (12.05 µg/cm²/day; 11.12 µg NO2/cm²/day) when compared to those of the M1 (1.50 263 

µg/cm²/day; 0.037 µg NO2/cm²/day) and M2 (3.9 µg/cm²/day; 0.054 µg NO2/cm²/day) 264 

treatments at 15 days of cultivation (Fig. 1). The sedimentation rate of nitrite in M3 was 265 

significantly lower (0.025 µg/cm²/day) than in the M1 (0.30 µg/cm²/day) at day 45. The 266 

sedimentation rate of nitrate in the M3 (13.8 µg/cm²/day) was significantly lower than in the 267 

M1 (20.5 µg/cm²/day) and M2 (22.0 µg/cm²/day) treatments at 30 days of culture. All 268 

treatments showed a general decrease in the sedimentation of nitrate toward the end of the 269 

culture. 270 

The sedimentation rates of total phosphorus in the M3 treatment were significantly 271 

higher than in the M1 and M2 at day 15 (Fig. 1). The sedimentation rates of total phosphorus 272 

in the M1 was significantly higher than in the M2 at day 30 and 45, of which the M1 decreased 273 

and the M2 showed a slight increase at 30 days and thereafter. The average sedimentation rate 274 

of total nitrogen in the M3 treatment (0.055 mg/cm²/day) was higher than in the M1 and M2 at 275 
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15 days of culture and then decreased over the following periods. No significant differences 276 

were shown between the M1 and M2 treatments for sedimentation rates of total nitrogen 277 

throughout the experimental period. Sedimentation of total nitrogen decreased in all treatments 278 

throughout the cultivation, with average values varying from 0.02 to 0.021 mg/cm²/day for the 279 

M1, 0.019 to 0.02 mg/cm²/day for the M2 and 0.016 to 0.055 mg/cm²/day for the M3. 280 

No significant differences were shown between treatments for the sedimentation rate of 281 

the total inorganic carbon (TIC) at any of the sampling periods (Fig. 1). Means were 0.8 ± 0.12, 282 

0.706 ± 0.14 and 0.8 ± 0.05 mg/cm²/day for the M1, M2 and M3 treatments, respectively. The 283 

sedimentation rate of the total organic carbon (TOC) in the M3 was significantly lower than in 284 

the M1 and M2 treatments at 15 days, but then increased and was significantly higher than the 285 

M2 at 30 days and the M1 at 45 days. In general, the sedimentation of TOC in all treatments 286 

increased throughout the experimental period.  287 

 288 

 (Suggested location of Figure 1) 289 

 290 

4.  Discussion 291 

Low survival of the shrimp in all treatments was perhaps due to the high salinity and the 292 

presence of White Spot Virus Syndrome in all three cultivation systems, of which the WSSV 293 

was present in all samples according to results of the qPCR. Maia et al. (2016) reported higher 294 

survival rates (~84%) with a density of 98 shrimps.m-2 and with a salinity of 22 g.L-1, and no 295 

WSSV was observed. The significantly lower shrimp survival in the M2 system may be 296 

associated with a longer cultivation time, which is ultimately a longer exposure of the shrimp 297 

to WSSV. Costa et al. (2010) reported that survival rates of the L. vannamei exposed to WSSV 298 

were 65% and 5% after 29 and 51 days of cultivation, respectively, suggesting that a longer 299 

exposure time of the shrimp to WSSV decreases survival. FCR and final yield of the M1 system 300 
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were higher than those of the other two management strategies, perhaps due to the higher 301 

stocking density that required an increased feed input throughout the cultivation. The high FCR 302 

of the M2 system was perhaps due to low shrimp survival, whereas the low FCR of the M3 may 303 

have been due to the compensatory growth when using a biphasic system for stocking the 304 

shrimp (Marques and Lombardi, 2011; Marques et al., 2012). Brito et al. (2016) used different 305 

feed management strategies in the cultivation of L. vannamei with a stocking density and 306 

obtained a lower AFC of 1.31 with 94% survival. 307 

The transparency, temperature, pH and dissolved oxygen of the cultivation water were 308 

within the ranges recommended for shrimp mariculture (Valenti, 1985; Trejo-Flores et al., 309 

2016). On the other hand, mean salinity (mean = 49.6; range = 42 to 61 g.L-1) was high in all 310 

treatments and above the values recommended in Boyd (1989), which are between 15 and 25 311 

g.L-1. Sedimentation rates of the nutrients and particulate matter in the M3 treatment were 312 

higher than those in the M1 and M2 for the first sampling period probably due to the high inputs 313 

of feed and fertilizer for the initial stocking density in the greenhouse raceways. Ma et al. (2013) 314 

reported a greater contribution of particulate material when cultivating marine shrimp in 315 

greenhouse ponds, but with a faster decomposition of the organic material due to the increased 316 

temperature. A reduction in particulate matter was observed in the M3 treatment after 30 days 317 

perhaps due to the reduced stocking density, which required less feed per unit of cultivation 318 

area. 319 

Chlorophyll-α was reduced in the second sampling period for the M1 treatment, which 320 

may be associated to the decrease in nitrogenous compounds (Silva et al., 2017). In the M2 321 

treatment, the chlorophyll-α increased at the third sampling period and other nutrients increased 322 

at the second and third periods as well. According to Costa et al. (2016), the high concentrations 323 

of nitrogen and phosphorus are related to the growth of phytoplankton communities. In turn, 324 

the phytoplankton supplements shrimp nutrition and recycles nutrients from the water column 325 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



 
 

14 
 

(Ananda et al., 2019). Chlorophyll-α was undetected in the M3 treatment for the first sampling 326 

period due to the first production phase being carried out in a greenhouse, which reduces the 327 

penetration of solar energy and ultimately photosynthetic activity. 328 

The M1 treatment showed the highest sedimentation rate of particulate material at 30 329 

days of culture and thereafter, but decreased until the end of the cultivation. Ribeiro et al. (2016) 330 

suggested that an increase of nutrients in shrimp ponds can stimulate benthic production, which 331 

improves the decomposition of organic matter and ultimately reduces the accumulation of 332 

nutrients. On the other hand, it has been shown that up to 30% of feed in shrimp grow-out ponds 333 

are drained to the aquatic environment as excrement and unconsumed feed, which also 334 

contribute to intrinsic problems related to water quality and the productive performance of 335 

shrimp (Pillay, 2004; Gaona et al., 2017). Mean values of the particulate matter for all 336 

treatments of the present study were similar to those reported for O. niloticus reared in net-tanks 337 

(6.13 to 9.23 mg/cm/day) in the semi-arid northeastern region of Brazil (Moura et al., 2014). 338 

Most of the particulate matter produced in shrimp grow-out ponds is formed by a combination 339 

of chemical products, fertilizers, excrements, undigested feed, undesired organisms and detritus 340 

(Flaherty et al., 2000; Hall, 2004; Paul and Vogl, 2011). Thus, the increased sedimentation of 341 

particulate material may be related to the proportionately high feed inputs required to sustain a 342 

high shrimp biomass.  343 

The sedimentation rates of ammonia, nitrite and nitrate were higher at 15 days of culture 344 

in the M3 treatment when compared to the other treatments, perhaps due to the use of molasses, 345 

wheat bran and calcium nitrate in the first phase of this management strategy. The 346 

sedimentation rates of nitrate were higher than those of the nitrite and ammonia in the M3 347 

treatment, suggesting that dissolved oxygen and the bacterial community was adequate to 348 

convert nitrogenous wastes into the most stable form of nitrogen. The accumulation of nitrate 349 
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is a positive externality for shrimp aquaculture ponds since high concentrations of ammonia 350 

lead to ecdysis, oxygen depletion, and mortality (Chen and Lin, 1992). 351 

The sedimentation rates of phosphorus and particulate material showed a similar 352 

increasing pattern in the M2, indicating an accumulation of wastes from high feed input. In 353 

general, feed is the major source of phosphorus in fed aquaculture systems (David et al., 2017b; 354 

Flickinger et al., 2020b). Aquaculture activities release high quantities of phosphorus in 355 

particulate matter to the environment because it is highly insoluble in water and poorly absorbed 356 

by the target species (Flickinger et al., 2020b). Bottom sediments have been shown to absorb 357 

approximately 66 to 84% of the phosphorus from feed in aquaculture, of which shrimp have 358 

been shown to absorb 25% of the phosphorus accumulated in the sediments (Yiyong et al., 359 

2001; Na and Kim, 2003; Guo and Li, 2003; Sugiura, et al., 2006; Avnimelech, 2009; Moura, 360 

et al., 2014). The decrease in sedimentation of phosphorus in the M1 and M3 treatments is 361 

probably associated with the reduction in feed offered before harvesting the shrimp and the 362 

compensatory growth in the second production phase of the M3. The average sedimentation 363 

rates of the phosphorus observed in the present study (113 µg/cm²/day) were approximately 364 

12% to 33% lower than those observed in Moura et al. (2014), which recorded sedimentation 365 

rates of 315 µg/cm²/day for the aquaculture of Nile tilapia in net-tanks.  366 

The sedimentation of total nitrogen is proportional to the quantity of feed offered and 367 

the protein content of the feed. Funge-Smith and Briggs (1998) suggested that 24% of the total 368 

nitrogen content of the artificial feed used in marine shrimp grow-out is converted into shrimp 369 

biomass, while 35% is drained with the effluents and 31% is retained in the sediments. Haque 370 

et al. (2016) reported that 33.6 g of nitrogen per 1,000 g of feed offered to the target species 371 

accumulate at the pond bottoms. The highest sedimentation rate of total nitrogen in the M3 372 

treatment in the present study was observed in the beginning of the culture and occurred because 373 

of the high feed input to sustain the high initial density of shrimp in the greenhouse phase of 374 
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the culture. Total nitrogen in the M3 was reduced at the second sampling period and thereafter 375 

as the second phase of the culture was carried out with a low stocking density, which required 376 

a reduction in the use of nitrogenous fertilizers per unit of production as well. 377 

The sedimentation rate of total nitrogen in the M2 showed stability starting at the second 378 

sampling period, which may be associated to an increase in primary production when 379 

considering the increasing concentration of chlorophyll-α throughout the culture (Faria et al., 380 

2001; Casé et al., 2008; Silva, et al.; 2017). The M1 treatment showed a trend of stabilization 381 

for the total nitrogen during the first three sampling periods and a downward trend until the end 382 

of the culture, perhaps due to the management strategy of this treatment that used molasses as 383 

a carbon source, showing a higher C/N ratio (3.1/1) than those of the M3 (1.44/1) and M2 384 

(1.08/1). An increased C/N ratio may facilitate the maintenance of nitrogenous compounds by 385 

heterotrophic and autotrophic organisms at acceptable levels for shrimp grow-out (Avnimelech, 386 

2009; Ballester et al., 2010; Brito et al., 2016; Xu et al., 2016). The sedimentation rates of 387 

carbon in the present study increased throughout the experimental period as well, likely due to 388 

the high production of wastes from feed, feces, and other material. TOC is expected to increase 389 

in aquatic production systems, since CO2 is removed from the atmosphere by photosynthetic 390 

phytoplankton and converted into organic material (Boyd et al., 2010). Flickinger et al. (2020a) 391 

showed that CO2 enters monoculture and Integrated Multi-Trophic Aquaculture (IMTA) 392 

earthen pond systems at a near constant rate, and in Amazon river prawn (Macrobrachium 393 

amazonicum) monoculture this atmospheric gas represented nearly 20% of all carbon inputs. 394 

Nevertheless, TOC in the water column was similar between these culture systems despite the 395 

high variation in feed carbon input, suggesting that much of the carbon remained immobilized 396 

in settled solid organic material and that the flow of carbon in the earthen ponds was limited by 397 

aerobic decomposition on the pond bottom and reuptake of CO2 by photosynthetic organisms 398 
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in the water column, thus maintaining constant TOC and TIC water concentrations (Flickinger 399 

et al., 2020a).  400 

Other studies on nutrient budgets in Amazon river prawn (Macrobrachium 401 

amazonicum) monoculture and its integration in IMTA have shown that chlorophyll-α and 402 

organic matter increase in the water column over time with no negative effects on water quality 403 

(David et al., 2017a; 2017b; Flickinger et al., 2019; Flickinger et al., 2020b). Moura et al. (2014) 404 

also observed that water quality remained adequate for the grow-out of Nile tilapia in net-cages 405 

despite the accumulation of TIC and TOC. In the present study, no negative impacts on water 406 

quality were observed with the accumulation of TOC, suggesting that inputs were insufficient 407 

to provoke high aerobic decomposition and deplete dissolved oxygen. Therefore, when 408 

considering the increase of chlorophyll-α over time and that no differences were shown between 409 

treatments, results of the TOC and TIC indicate that pelagic photosynthetic biota was absorbing 410 

atmospheric CO2 at a similar rate between pond systems. In addition, proliferation of 411 

photosynthetic organisms may have been limited by aerobic decomposition of feed and 412 

fertilizer that accumulated on the pond bottom, and the concentration of dissolved oxygen that 413 

regulates aerobic decomposition (Flickinger et al., 2020a). 414 

In conclusion, the present study shows elevated sedimentation rates of nutrients and 415 

particulate material during the first 60 days of L. vannamei grow-out when carried out in high 416 

stocking densities. No changes were shown between the tested management strategies due to 417 

the high feed input necessary to meet the nutritional requirements of the animals. The increase 418 

of primary productivity throughout the experimental period may have facilitated the 419 

maintenance of nitrogenous compounds and other nutrients at acceptable concentrations. 420 
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Tables and Figures 693 

 694 

Table 1 

Characterization of the commercial feed used in the cultivation. 

 

Phases 

 

CP (%) 

 

P (%) 

 

E.E. (%) 

Granulometry 

(mm) 

Phase 1 40 1.3 0.9 0.54 - 1.0 

Phase 2 40 1.3 0.9 1.0 - 1.8 

Phase 3 35 0.9 0.8 2.5 

CP – Crude Protein, P – Phosphorus and E.E. – Ether Extract 

 695 

 696 

Table 2  

Means (± SD) of the productive performance of the L. vannamei grow-out carried out with different 

management strategies. Different letters indicate significant differences according to the Tukey test (P<0.05). 

Parameters 
 Treatments  

M1 M2 M3 

Survival (%) 42.9 ± 5.5a 12.2 ± 3.5b 39.3 ± 0.1a 

Final Individual Mass (g) 6.3 ± 0.38b 9.4 ± 1.9 a 6.9 ± 0.51b 

Feed Conversion Ratio 2.95 ± 0.47a 1.44 ± 0.41b 0.22 ±0.08c 

Final Yield (kg.ha-1) 651.9 ± 99.4a 332.0 ± 149.3b 219.0 ± 56.6b 

 697 

 698 

Table 3 

Means (± SD) of the limnological variables in the grow-out of L. vannamei carried out with different 

managements strategies. Different letters indicate significant differences according to the Tukey test 

(P<0.05). 

 Treatment 

Variable M1 M2 M3 

Transparency (cm) 31.2 ± 8.6a 33.7 ± 3.1a 33.2 ± 1.1a 

Salinity (g.L-1) 41.8 ± 1.4a 46.0 ± 1.6a 61.1 ± 0.9b 

Temperature (°C) 28.9 ± 0.2a 29.0 ± 0.6a 28.5 ± 0.1a 

pH 8.4 ± 0.1a 8.4 ± 0.1a 7.8 ± 0.2a 

Dissolved Oxygen (mg.L-1) 7.2 ± 0.7a 5.6 ± 1.2a 7.0 ± 0.8a 

 699 

 700 

Table 4 

Means (± SD) of the chlorophyll-α (µg.L-1) of the cultivation water in the grow-out of L. vannamei  carried 

out with different management strategies. Different letters indicate significant differences according to the 

Tukey test (P<0.05). 

 Days 

Treatment 15 30 45 60 

M1 145.74±97.6a 177.56±160.0a 76.56±23.0a 76.18±13.04a 

M2 34.1±27.7a 10.64±4.9a 64.53±54.8a 106.86±30.9a 

M3 ND 10.14±8.3a 10.98±8.98a  
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Fig. 1. Means (±SD) of the sedimentation rates of: A) particulate matter; B) ammonia; C) nitrite; D) nitrate; E) total 

phosphorus; F) total nitrogen; G) total inorganic carbon; and H) total organic carbon for the different treatments*. 

Distinct letters indicate significant differences according to the Tukey test (p<0.05).  

*The initial stocking density of the shrimp in the M3 treatment was 1,000 shrimps.m-2, then decreased to 8 shrimps.m-2 

starting at 30 days of culture. 
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